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Abstract

It has been suggested by Weinberg et al. that an instability due to the nonlinear coupling of a neutron star’s tide to
its p- and g-modes could affect the gravitational-wave phase evolution of a neutron star binary. Weinberg suggests
that this instability can turn on as the gravitational waves pass through the sensitive band of ground-based
detectors, although the size of the effect is not known. The discovery of the binary neutron star merger GW170817
provides an opportunity to look for evidence of nonlinear tides from p–g mode coupling. We compute Bayesian
evidences that compare waveform models that include the p–g mode coupling with models that do not. We find
that the consistency between GW170817 signal and the p–g mode model reported by Abbott et al. is due to a
degeneracy between the phenomenological waveform used to model the effect of nonlinear tides and the standard
post-Newtonian waveform. We investigate the consistency of the GW170817 signal with regions of the parameter
space where the effect of nonlinear tides is not degenerate with the standard model. Regions of the nonlinear tide
parameter space that have a fitting factor of less than 99% (98.5%) are disfavored by a Bayes factor of 15 (25). We
conclude that regions of the parameter space where nonlinear tides produce a measurable effect are strongly
disfavored and improved theoretical modeling will be needed if future observations are to constrain nonlinear tides
from p–g mode coupling in neutron stars.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Close binary stars (254); Gravitational waves (678);
Compact binary stars (283)

1. Introduction

The discovery of the binary neutron star merger GW170817
(Abbott et al. 2017) has given us a new way to explore the
physics of neutron stars. Recent studies have measured the
star’s tidal deformability, and placed constraints on the
equation of state of the neutron stars (Abbott et al. 2017,
2018, 2019b, 2020; De et al. 2018; Most et al. 2019; Raithel
et al. 2018; Tews et al. 2018; Capano et al. 2020; Radice &
Dai 2019). Weinberg et al. (2013) have suggested that the star’s
tidal deformation can induce nonresonant and nonlinear
daughter wave excitations in p- and g-modes of the neutron
stars via a quasi-static instability. This instability would remove
energy from a binary system and possibly affect the phase
evolution of the gravitational waves radiated during the
inspiral. Although Venumadhav et al. (2014) concluded that
there is no quasi-static instability, and hence no effect on the
inspiral, Weinberg (2016) claims that the instability can rapidly
drive modes to significant energies well before the binary
merges. However, the details of the instability saturation are
unknown, so the size of the effect of the p–g mode coupling on
the gravitational waveform is not known (Weinberg 2016). The
discovery of the binary neutron star merger GW170817 by
Advanced LIGO and Virgo provides an opportunity to
determine if there is evidence for nonlinear tides from p–g
mode coupling during the binary inspiral.

As the physics of the p–g mode instability is uncertain, Essick
et al. (2016) developed a parameterized model of the energy loss
due to nonlinear tides. This model is parameterized by the
amplitude and frequency dependence of the energy loss, and the
gravitational-wave frequency at which the instability saturates
and the energy loss turns on. For plausible assumptions about the
saturation, Essick et al. (2016) concluded that >70% of binary

merger signals could be missed if only point-particle waveforms
are used, and that neglecting nonlinear tidal dynamics may
significantly bias the measured parameters of the binary.
Bayesian inference can be used to place constraints on nonlinear
tides during the inspiral of GW170817. An analysis by Abbott
et al. (2019a) computed Bayes factors that investigate whether
the GW170817 signal is more likely to have been generated by a
model which includes nonlinear tides or one which does not.
Abbott et al. (2019a) find a Bayes factor of order unity, and
conclude that the GW1701817 signal is consistent with both a
model that neglects nonlinear tides and with a model that
includes energy loss from a broad range of p–g mode
parameters. However, the prior space used in this analysis
includes a large region of parameter space where the amplitude
of the effect produces a gravitational-wave phase shift that is
extremely small. In this case, a waveform that includes p–g
mode parameters will have a likelihood that is identical to that of
the waveform without the p–g mode instability. The p–g mode
model extends the standard waveform model by adding
additional parameters that describe the nonlinear tidal effects.
However, when including new parameters in a hypothesis if the
likelihood does not vary across large portions of the prior
volume for these new parameters relative to the likelihood of the
original model, then the Bayes factor will not penalize this
additional prior volume, nor will it penalize any extraneous
parameters in the model (see, e.g., Kass & Raftery 1995; Hobson
et al. 2010). We examine the prior space of the p–g model used
by Abbott et al. (2019a), and find that although the p–g model
model contains regions that are not consistent with the standard
model, there are large regions of the prior space where the
likelihood is high because the p–g mode model is degenerate
with the standard model. These regions of the prior space
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dominate the evidence and hence the Bayes factor neither favors
nor disfavors the inclusion of p–g mode parameters.

We investigate a variety of different prior distributions on
the p–g mode parameters beginning with a prior distribution
that is similar to that tested in Abbott et al. (2019a), and
includes large regions of the parameter space that produce a
negligible gravitational-wave phase shift. When comparing
the evidence for this model with the standard waveform model
used by De et al. (2018), we find a Bayes factor of order unity,
as expected. We then investigate a prior distribution in which
the p–g mode instability parameters are constrained to induce
a phase shift to the waveform that is greater than 0.1 radians.
This phase shift is calculated from the time the waveform
enters the sensitive band of the detector to the time when
the waveform reaches the innermost stable circular orbit.
We choose this threshold to exclude trivial regions of
the parameter space that produce a nonmeasurable effect.
However, we again find a Bayes factor of order unity when
compared with the model hypothesis that does not model the
p–g mode instability. Investigation of these results showed
that this is due to parameter degeneracies between the p–g
mode model and the intrinsic parameters of the standard
waveform model.

Finally, we reduce the prior space to contain only the regions
where the p–g mode waveform is not degenerate with the
standard model by computing the fitting factor (Apostolatos
1995) of p–g signals against a set of standard waveforms. We
do this to restrict the region of parameter space to that where
the p–g effect is measurably distinct from a model that neglects
nonlinear tides. We calculate the Bayes factor as a function of
the fitting factor. We find that as the p–g mode parameter space
is restricted to exclude regions that have a high fitting factor
with standard waveforms, the Bayes factor decreases signifi-
cantly. Regions of the nonlinear tide parameter space that have
a fitting factor of less than 99% (98.5%) are strongly disfavored
by a Bayes factor of 15 (25). While certain prior distributions
of p–g mode parameters are consistent with the data, we find
that these distributions are ones that contain large regions of
nonmeasurable parameter space either because the effect
produced is too small to measure, or the effect is degenerate
with other parameters of the standard model. We conclude that
the consistency of the GW170817 signal with the model of
Essick et al. (2016) is due to degeneracies and that regions
where nonlinear tides produce a measurable effect are strongly
disfavored.

2. Waveform Model

As two neutron stars orbit each other, they lose orbital
energy, Eorbital, due to gravitational radiation, EGW . The
gravitational waveform during the inspiral is well modeled by
post-Newtonian theory(see, e.g., Blanchet 2014). The effect of
the p–g mode instability is to dissipate orbital energy by
removing energy from the tidal bulge of the stars (Weinberg
et al. 2013; Essick et al. 2016; Weinberg 2016). Once unstable,
the coupled p- and g-modes are continuously driven by the
tides, giving rise to an extra energy dissipation, ENL , for each
star in the standard energy-balance equation (Peters &
Mathews 1963)

= - - -E E E E . 1orbital GW NL
1

NL
2 ( )   

As the details of how the nonlinear tides extract energy from
the orbit is not known, Essick et al. (2016) constructed a simple
model of the energy loss and calculated plausible values for the
model’s parameters. In this model, the rate of orbital energy
lost during the inspiral is modified by

µ Q -+E Af f f , 2n
NL

2
0( ) ( )

where A is a dimensionless constant that determines the overall
amplitude of the energy loss, n determines the frequency
dependence of the energy loss, and f0 is the frequency at which
the p–g mode instability saturation occurs and the effect turns
on. By solving Equation (1), Essick et al. (2016) computed the
leading order effect of the nonlinear tides on the gravitational-
wave phase as a function of A, n, and f0. In this analysis, they
allowed each star to have independent values of A, f0, and n,
but found that the energy loss due to nonlinear tides depends
relatively weakly on the binary’s mass ratio. Hence, they
consider a model that performs a Taylor expansion in the
binary’s component mass (Del Pozzo et al. 2013), and include
only the leading order terms in the binary’s phase evolution.
Given this, we parameterize our nonlinear tide waveform with a
single set of parameters A, n, and f0, by setting =E ENL

1
NL
2  . We

keep only the leading order nonlinear tide terms when we
obtain the quantities t( f ) and f( f ) used to compute the
stationary-phase approximation (Sathyaprakash & Dhurandhar
1991; Droz et al. 1999; Lindblom et al. 2008). This approach is
reasonable for GW170817, as both neutron stars have similar
masses and radii (De et al. 2018).
The dependence of A, n, and f0 on the star’s physical

parameters is not known (Weinberg 2016). Essick et al. (2016)
estimate that plausible parameter ranges are A10−6,
0n2, and 30f080 Hz. Zhou & Zhang (2017)
found that the frequency at which the instability begins to
grow is equation-of-state dependent and can occur at gravita-
tional-wave frequencies as high as 700Hz. Andersson & Ho
(2018) suggest that the instability may only act during the late
stages of inspiral, (above 300 Hz), otherwise the large energy
dissipation will cause the temperature of the neutron stars to be
very large.
In this paper, we compare two models for the gravitational

waves radiated by GW170817. The first is the standard
restricted stationary-phase approximation to the Fourier trans-
form of the gravitational waveform h f˜( ), known as the
TaylorF2 waveform (Sathyaprakash & Dhurandhar 1991).
We begin with the same waveform model used by De et al.
(2018), which is accurate to 3.5 PN order in the orbital phase,
2.0 PN order in spin–spin, self-spin, and quadrupole–monopole
interactions, 3.5 PN order in spin–orbit coupling, and includes
the leading and next-to-leading order corrections from the star’s
tidal deformability (Kidder et al. 1993; Blanchet et al.
1995, 2004; Mikoczi et al. 2005; Flanagan & Hinderer 2008;
Arun et al. 2009; Buonanno et al. 2009; Vines et al. 2011; Bohé
et al. 2013, 2015; Marsat et al. 2014). We then construct a
second model that adds the leading order effect of nonlinear
tides computed using the model of Essick et al. (2016). We
compute the Fourier phase for the TaylorF2 model Ψ( f )TaylorF2
and add a term that accounts for the additional energy lost due
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to nonlinear tides ΨNL( f ), given by
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Here, fref is a reference frequency that we set to 100Hz following
Essick et al. (2016), G is Newton’s gravitational constant, c, is the
speed of light, and = + m m m m1 2

3 5
1 2

1 5( ) ( ) is the chirp
mass of the binary.1 This waveform model can have a degeneracy
in the gravitational-wave phasing with chirp mass when n=4/3.
For this value of n, the Fourier phase in Equation (3) for nonlinear
tides is Ψ( f )∝ f−5/3, which is the same power-law dependence as
the chirp-mass phasing. A degeneracy occurs when f0 is
comparable or lower than the frequency at which chirp mass
can be accurately measured. In this case, the p–g mode instability
is degenerate with changing the chirp mass. In principle, there will
be other degeneracies with other intrinsic parameters of the
gravitational-wave signal for other values of n.

We generate the standard TaylorF2 waveform using the
LIGO Algorithm Library (LIGO Scientific Collaboration et al.
2018) and multiply this frequency-domain waveform by the
term due to the nonlinear tides,

= ´ - Y+h f h f i fexp . 4TaylorF2 NL TaylorF2 NL˜ ( ) ˜ ( ) [ ( )] ( )

The Fourier phase for the nonlinear tides is implemented as a
patch to the version of the PyCBC software (Nitz et al. 2018)
used by De et al. (2018). Both the standard and nonlinear tide
waveform models are terminated when the gravitational-wave
frequency reaches that of a test particle at the innermost stable
circular orbit of a Schwarszchild black hole of mass
M=m1+m2. For the neutron star masses considered here,
this frequency is between 1.4 and 1.6 kHz.

3. Model Priors

Bayes theorem offers a methodology for evaluating the
plausibility of models relative to a given data set, and then
updating these prior model beliefs with better hypotheses.
Bayes theorem states that

q q q
=d

d
d

p H
p H p H

p H
,

,
, 5( ∣ ) ( ∣ ) ( ∣ )

( ∣ )
( )

where dp H( ∣ ) is the evidence of the model H, qp H( ∣ ) is the
prior distribution of the parameters given the signal model,

qdp H,( ∣ ) is the likelihood of the data for a particular set of
parameters q, and q dp H,( ∣ ) is the posterior distribution of
the parameters given the signal model. The likelihood used in
this analysis assumes a Gaussian model of detector noise and
depends upon the noise-weighted inner product between the

gravitational waveform and the data from the gravitational-
wave detectors (Finn 2001; Rover et al. 2007). The choice of
prior distributions on the parameters of the signal model
represent the hypothesis that we want to test. The posterior
distributions reflect how to update ones beliefs with respect to
the likelihood and the data. Thus, by examining many different
parameter hypotheses, we can investigate the extent to which
GW170817 is accurately modeled by p–g mode instability
waveform models.
In our analysis, we fix the sky location and distance to

GW170817 (Soares-Santos et al. 2017; Cantiello et al. 2018)
and assume that both neutron stars have the same equation of
state by imposing the common radius constraint (De et al.
2018). In the case of the standard TaylorF2 waveform,
HTaylorF2, our analysis is identical to that described in De
et al. (2018). This analysis considered three prior distributions
on the binary’s component mass. Here, we only consider the
uniform prior on each star’s mass, with ~m U M1, 21,2 [ ] ,
and the Gaussian prior on the component masses
m1,2∼N(μ=1.33, σ=0.09) Me (Ozel & Freire 2016). For
both mass priors, we restrict the chirp mass to the range

< <M M1.1876 1.2076 . As our analysis is identical to
that of (De et al. 2018), we refer to that paper for the details of
the data analysis configuration.
Given the uncertainty on the range of the nonlinear tide

parameters, we follow Abbott et al. (2019a) and let
Î -n U 1, 2.999[ ], draw A from a distribution uniform in

log10 between 10−10 and 10−5.5, and f0 äU[10, 100] Hz. We
use this along with a uniform prior distribution on the mass
from De et al. (2018).
We also consider two alternative choices of drawing f0: we

draw f0 from a uniform distribution between 15 and 100Hz, as
used by Essick et al. (2016), and from a uniform distribution
between 15 and 800Hz to allow for the larger values of f0
suggested by Zhou & Zhang (2017) and Andersson & Ho
(2018). For these choices, we consider A uniform in log10
between 10−10 and 10−6. The distribution on n is permitted to
be näU[−1.1, 2.999]. For these alternative prior distribu-
tions, we also consider applying a further constraint on the
parameters. As some combinations of A, n, and f0 can produce
extremely small gravitational-wave phase shifts (Essick et al.
2016), we place a cut on the gravitational-wave phase shift due
to nonlinear tides
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where fISCO is the termination frequency of the waveform
(which is always larger than f0 in our analysis). This
gravitational-wave phase shift from the p–g mode instability
is strictly negative, but we take the convention of using the
absolute value of the phase shift for convenience. We restrict
the prior space to values of δf>0.1 rad. Phase shifts of
δf≈0.1 rad have an overlap between the two waveform
models greater than 99.98%. This cut means that the resulting
priors on A, n, and f0 are not uniform, but are biased in favor of
combinations of parameters that may produce a measurable
effect on the phasing of the waveform due to nonlinear tides.

1 AppendixA of Essick et al. (2016) gives the change to the gravitational-
wave phase f( f ) as a function of frequency and not the change to the Fourier
phase Ψ( f ) (see, e.g., Lindblom et al. 2008 for a discussion of how these
differ). The former quantity is useful to compute the change in the number of
gravitational-wave cycles, but the latter is required to compute the modification
to the TaylorF2 waveform. Abbott et al. (2019a) correct this mistake.
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While δf is a simple proxy for how similar or dissimilar two
waveforms are, formally this is given by the match between
two waveforms. A δf of 1 radian may have a low overlap with
a waveform if the radian is accumulated over a large
bandwidth, but a high overlap if the radian is accumulated
near the very end of the signal. Figure 1 shows a depiction of
the prior distributions used when using a permissive prior on
δf, similar to Abbott et al. (2019a), and when using a constraint
on the p–g mode parameters such that δf>0.1 rad.
A stricter approach to constructing a prior distribution that

considers p–g mode effects that are distinguishable from
standard waveforms is to examine the fitting factor between a
distribution of p–g mode waveforms and a set of comparable
TaylorF2 waveforms. To do so, we examine the fitting factor of
our Bayesian inference analysis with respect to a template bank
of nonspinning, mass-only TaylorF2 waveforms. We construct
a template bank of ∼20,000 nonspinning, mass-only wave-
forms of comparable masses to the prior distribution on the
mass parameters. The template bank is constructed with
component masses, m(1,2)ä(1.0, 2.0) Me, chirp masses,

Î M1.1826, 1.2126c ( ) , and a minimal match placement
of 99.9%. We then place a threshold on the evidence
calculation from the Bayesian analysis based on the maximum
overlap with this template bank of standard waveforms. This
permits an analysis of the Bayes factor for nonlinear tides
where the prior distribution on p–g mode parameters is
determined by the fitting factor with a set of standard signals.

4. Methods

We use the gravitational-wave strain data from the Advanced
LIGO and Virgo detectors for the GW170817 event, made
available through the GW Open Science Center (Vallisneri
et al. 2015; Blackburn et al. 2017). We then repeat the analysis
of De et al. (2018) using the waveform model +HTaylorF2 NL to
compute the evidence +dp HTaylorF2 NL( ∣ ).
We use Bayesian model selection to determine which of the

two waveform models described in Section 2 is better
supported by the observation of GW170817. Bayes theorem in
Equation (5) permits us a method for model through the ratio of
the evidence from each model. This ratio of the model
evidences is called the Bayes factor, which we denote as . A
Bayes factor greater than unity indicates support for the model
in the numerator, while a Bayes factor less than unity indicates
support for the model in the denominator. The Bayes factor can
be written as

= +
d

d

p H

p H
. 7

TaylorF2 NL

TaylorF2

( ∣ )
( ∣ )

( )

The numerator of Equation (7) is the evidence for nonlinear
tides +dp HTaylorF2 NL( ∣ ). For the denominator of Equation (7),
we use the evidence dp HTaylorF2( ∣ ) provided as supplemental
materials by De et al. (2018).
Posterior distributions for parameters of interest can be also

computed by marginalizing the posterior probability distribu-
tion over other parameters. Marginalization to obtain the

Figure 1. Prior probability distributions on the parameters ( f0, n, A) for the waveform model HNL=HTaylorF2+NL and the resulting prior on the gravitational-wave
phase shift δf shift due to nonlinear tides. The dark blue solid lines show the priors when f0 is drawn from a uniform distribution between 15 and 100Hz with a
δf�0.1 rad constraint restricting some of the prior space. The pink dotted lines represent prior distributions on the nonlinear tidal parameters, similar to Abbott et al.
(2019a).

4

The Astrophysical Journal, 894:41 (8pp), 2020 May 1 Reyes & Brown



posterior probabilities and the evidence is performed using
Markov Chain Monte Carlo (MCMC) techniques. To compute
posterior probability distributions and Bayesian evidences, we
use the PyCBC Inference software (Nitz et al. 2018; Biwer
et al. 2019) using the parallel-tempered emcee sampler
(Foreman-Mackey et al. 2013; Vousden et al. 2016). This
sampler allows the use of multiple temperatures to sample the
parameter space (Earl & Deem 2005; Wang & Swendsen 2005;
Foreman-Mackey et al. 2013).

From these multiple temperatures, we use the thermody-
namic integration method (Lartillot & Philippe 2006; Friel &
Pettitt 2008) to estimate the logarithm of the Bayesian
evidence, ln z, given as

ò b= á ñbz dln ln . 8
0

1
( )

The estimate of the Bayesian evidence is determined by the
integral over inverse temperatures, β, of the average log
likelihood, á ñbln , for each inverse temperature β. An
approximation to this integral can be made through use of
trapezoid rule integration method. Following De et al. (2018)
we use 51 temperatures where we use a combination of
geometric and logarithmic temperature placements to improve
the accuracy of the integral (Liu et al. 2016).

We verify the results of the thermodynamic integration
evidence calculation by comparing it with the steppingstone
algorithm (Xie et al. 2010), which utilizes the same likelihoods
from multitempering sampling as the thermodynamic integra-
tion method. Both trapezoidal rule thermodynamic integration
and steppingstone methods can have some bias in the estimate
of the logarithm of the Bayesian evidence due to a finite
number of temperatures being used. This bias is mitigated by
an increased number of temperatures (Xie et al. 2010; Maturana
Russel et al. 2019). Additionally, this bias can be mitigated in
thermodynamic integration by improving the order of the
quadrature integration (Friel et al. 2014). We also use a higher
order trapezoidal rule from Friel et al. (2014) and verify that the
results are consistent.

We also estimate the error for each method of evidence
calculation. The thermodynamic integration method and
steppingstone algorithm both contain Monte Carlo error (Annis
et al. 2019). For the thermodynamic integration method the
Monte Carlo error on the thermodynamic integral can be
estimated following the methodology of Annis et al. (2019).
We use this same uncertainty estimate for the higher order
trapezoidal rule as well. In Xie et al. (2010) there is a Monte
Carlo variance estimate for the logarithm of the evidence from
the steppingstone method that we also use here.

The last source of error in the evidence calculation that we
consider is whether the MCMC has converged to stable
likelihood values across all of the temperatures. This requires
examination of the stability of the evidence calculations as the
MCMC progresses. Independent samples are drawn according
to the nacl method, as described by Biwer et al. (2019), at
various points in the run. This method takes a specific endpoint
iteration, takes half the endpoint iteration as the starting point
iteration, and calculates the autocorrelation length of the
samples between the starting point and the endpoint iteration.
Independent samples are drawn in intervals of the maximum
autocorrelation length for the samples within this segment. We
divide the full run into 12 segments and calculate the evidence
from each one of these segments to examine how the evidence

progresses along the MCMC iterations. Gradually the evidence
begins to settle toward a constant value as the MCMC
progresses. We take the difference between the last two
evidence estimates as the convergence error.
We estimate the total error on our evidence calculations,

σln z, by adding the errors in quadrature according to

s s s= + . 9zln MC
2

convergence
2 ( )

Here, the error σMC is the Monte Carlo error and σconvergence is
the convergence error. Finally, to estimate the Bayes factors,
we model the log evidence as a normal distribution, with mean
given from the log evidence calculation, and standard deviation
given by the error propagation formula in Equation (9). The
logarithm of the Bayes factor can then be calculated from the
difference in the logarithm of the evidences. The standard
Bayes factor is then the exponential of the logarithm of the
Bayes factor.

5. Results

Compared with the standard waveform model, we find that
the p–g mode model with priors, where δf is unconstrained
gives a Bayes factor of order unity. When we use p–g mode
priors where δf>0.1 radians we also find a Bayes factor of
order unity. Following the Bayes factor interpretation of Kass
& Raftery (1995) and Jeffreys (1998), these Bayes factors
cannot be considered to be statistically significant. A Bayes
factor of unity indicates that whatever beliefs we had about the
plausibility of the p–g mode instability prior to GW170817 is
unchanged by the observation of GW170817. For the narrow
range of 15�f0�100 Hz where δf>0.1 rad, we find that
the Bayes factors are ~ 0.7. This is also true of the prior
range 10�f0�100 Hz with unconstrained δf. The broader
range 15�f0�800 Hz, where δf>0.1 rad, we find that

~ 0.7 as well. Our estimated statistical error on Bayes
factors due to Monte Carlo error and convergence error is
∼±0.1 at the 90% confidence level.
When we consider the way that the nonlinear tides enter

the Fourier phase in Equation (3), we see that if n=4/3 then
the nonlinear tides enter the Fourier phase of the waveform
with the same power-law dependence on frequency f as the
chirp mass, that is Ψ( f ) ∝ f−5/3. We also note that for the
effect of nonlinear tides to be degenerate with chirp mass, they
must turn on at a frequency f0 that is close to the low-frequency
limit of the detector’s sensitive band. If the effect turns on at
higher frequencies, then the phasing will change in the
detector’s sensitive band and it is more difficult to compensate
for the nonlinear tide effect with a change in chirp mass.
The marginalized posterior distributions on parameters

shown in Figure 2 show a strong degeneracy between the
source-frame chirp masssrc and nonlinear tides that creates a
tail in the chirp-mass posterior skewed toward lower values of
chirp mass than the value measured using the standard
waveform model, =  M1.1867 0.0001src

 (De et al.
2018). We see a peak in the posteriors of n and f0 at n4/
3 and f035 Hz. This parameter degeneracy is also correlated
with large A, where 10−8A<10−6. The samples with large
posterior values of δf seen in Figure 2 are strongly correlated
with source-frame chirp masses   1.1866.src We have
examined the change to the posterior distribution when
changing the low-frequency cutoff of the likelihood integration
from 20 to 25Hz, and to 30Hz. In these analyses, the peak in
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the posterior of f0 tracks the low-frequency cutoff of the
likelihood integration, confirming that this effect is due to the
chirp-mass degeneracy with the low-frequency cutoff. The
chirp-mass degeneracy is also present in the analysis with the
broader range of f0, however it is not as pronounced in the
posterior samples due to the larger prior space being explored.
For the prior distributions discussed above, the observation of
GW170817 does not provide strong statistical evidence either
for or against the presence of nonlinear tides.

Given the observed parameter degeneracies, we now
investigate regions of the parameter space where nonlinear
tidal effects are not degenerate with standard waveforms by
thresholding the prior distribution of p–g waveforms on their
fitting factor with standard waveforms. We combine the results
of our analysis on the uniform mass, δf constrained, narrow f0
prior distribution model to obtain 22,600 independent samples.
We then examine the fitting factor of every independent

sample, from every temperature, with a nonspinning, mass-
only template bank of TaylorF2 waveforms with comparable
masses to GW170817. For simplicity, we only keep the mass
parameters and p–g mode parameters in the overlap calcula-
tions, as the correlation between nonlinear tidal dynamics is
most apparent in the measured chirp mass. When we examine
the fitting factor between nonlinear tidal waveforms and this
template bank we observe that there is a very high match
between standard templates and nonlinear tidal waveforms
when n=4/3. The nonlinear tidal waveforms that least match
this template bank tend to be those parameterized by large
amplitude and large gravitational-wave phase shift. We then
recompute the Bayes factor when discarding samples from the
analysis below a particular fitting factor with the template bank.
To ensure a robustness of the point estimate we use a bootstrap
method to estimate the Monte Carlo error for this Bayes factor
estimate (Efron 1992). The bootstrap estimated Monte Carlo

Figure 2. Marginalized posterior distributions for the uniform mass prior and a f0 restricted to the range 15 and 100Hz. The vertical lines on the marginalized
histograms display the 5th, 50th, and 95th percentiles of the posteriors. The three-detector network signal-to-noise ratio for each sample is given on the color bar. The
posterior scatter plots show 50% and 90% credible interval contours. The posteriors on n is peaked n4/3 and for values of f0 close to the lower end of the detector’s
low-frequency sensitivity. In this region of the parameter space, the effect of nonlinear tides is degenerate with chirp mass, causing a skew in the chirp-mass posterior.
It can be seen from the δf– plot (lower left) that large phase shifts due to nonlinear tides are due to points in the parameter space where a value of chirp mass can be
found that compensates for the phase shift of the nonlinear tides. It is notable that the peaks in the f0 posterior, at f0≈30 Hz and f0≈70 Hz seem to be reversed from
those in Figure 2 of Abbott et al. (2019a). Note that the marginalized posterior for A is diminished for A<10−8 due to the δf prior constraint.
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error tends to be much larger than the convergence error for this
analysis and so we neglect inclusion of convergence error in
the estimate. A statistically significant Bayes factor of ∼30
(20), against nonlinear tides, is found when the waveform has
an overlap less than 98.5 (98.85)% with the standard
waveform, see Figure 3. While this metric is insufficient to
rule out the p–g mode instability, it is a useful metric in
understanding why the evidence is nearly identical to the
evidence from De et al. (2018). We find that portions of the p–g
mode parameter space that most contribute toward the evidence
come from regions of the parameter space that have a high
overlap with standard waveforms. This occurs either through A
being too small to induce a large change in the phase of the
waveform or through an associated parameter degeneracy with
the chirp mass caused by large A, low f0, and n∼4/3.

Finally, we examine the leading order estimated energy
dissipated through nonlinear tides for the case of a uniform
prior on the mass, with 15�f0�100 Hz, with a δf>0.1
radian constraint. In our analysis, the 95th percentile of the
estimated energy dissipated through nonlinear tides from our
prior distribution is approximately 2.6×1051 erg at the
terminating frequency of the TaylorF2 waveform, fISCO. The
estimated energy radiated by gravitational waves by neutron
stars of the estimated mass range of GW170817 is greater than
∼1053 erg. Our analysis finds the energy dissipated through
nonlinear tides at the 95% posterior credible percentile is
3×1050 erg. We find our 95% posterior credible percentile to
be less than the 90% confidence interval constraint of
2.7×1051 erg in Abbott et al. (2019a). Samples from our
posterior distribution that have dissipation energies greater than
the 90% credible interval tend to come from two modes in the
parameter space. The first mode is from parts of the parameter

space with large A, for n∼4/3, low f0, and δf∼100 rad. The
second mode is from parts of the parameter space with A 
10−8, for 1.6 n<3.0, and δf∼1–10 rad. The high end of
the nonlinear tidal energy constraints are thus dominated by
waveforms that are degenerate with the standard signal.

6. Discussion

In this paper, we have used the observation of GW170817
and the model of Essick et al. (2016) to look for evidence of
nonlinear tides from p–g mode coupling during the inspiral
(Weinberg et al. 2013; Weinberg 2016; Zhou & Zhang 2017).
Over the broad prior space, we find a Bayes factor of unity
which gives an inconclusive result on whether nonlinear tides
are favored or disfavored in GW170817, consistent with
Abbott et al. (2019a). This Bayes factor can be interpreted as
stating that there is insufficient evidence to change our prior
beliefs about the credibility of the p–g mode hypothesis after
the observation of GW170817. A closer examination of the
posterior distribution led us to conclude that nonlinear tides are
consistent with the signal GW170817 because they either cause
very small phase shifts to the waveform, or the nonlinear tides
must enter the waveform in a way that is degenerate with the
other intrinsic parameters of GW170817. Regions of the
nonlinear tide parameter space that have a fitting factor of less
than 99% (98.5%) are disfavored by a Bayes factor of 15 (25).
We find that waveforms from a p–g mode instability with
overlap >98.5%, tend to either induce a very small phase shifts
to the waveform or are degenerate with other intrinsic
parameters of GW170817. This leads us to conclude that
modeling GW170817 with nonlinear tidal parameters may not
offer advantages over using a simpler model. We conclude that
the consistency of the GW170817 signal with the model of

Figure 3. Estimated Bayes factors for nonlinear tidal parameters when the samples are filtered by the fitting factor to a nonspinning, mass-only template bank of
TaylorF2 waveforms. The convention in Bayes factor is switched from the main body of the text to represent the Bayes factor for the ratio of evidence for no nonlinear
tides, dp HTaylorF2( ∣ ), to the evidence for nonlinear tides, +dp HTaylorF2 NL( ∣ ). This is abbreviated as  NL

NL! . The three methods for estimating the Bayes factor are the
thermodynamic integration method from trapezoid rule integration (dark gray dashed line), the thermodynamic integration method from the higher order trapezoid rule
(yellow small-dashed line), and the steppingstone algorithm (dark pink solid line). A bootstrap method is used to estimate approximate errors on the Bayes Factors.
Error bars represent 5th and 95th percentiles. The sampling error becomes large at a fitting factor 99%.
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Essick et al. (2016) is due to parameter degeneracy and that
regions where nonlinear tides produce a measurable effect are
strongly disfavored.

In principle, one could improve our analysis by separately
parameterizing the amplitude, turn-on frequency, and fre-
quency evolution for each star as in Abbott et al. (2019a).
However, we find our results to be broadly consistent with
Abbott et al. (2019a), so we do not expect these to affect the
main conclusion of our paper. Further improvements to the
parametric model of p–g mode instability could include a
higher order post-Newtonian expansion of the instability, or
further understanding of the instability’s interaction with
neutron star magnetic fields (Weinberg 2016). Nonlinear tides
are poorly understood and the contribution from other stellar
oscillation modes may yet contribute to a more accurate picture
of the interior dynamics of neutron stars (Andersson &
Ho 2018). Current models of the gravitational-wave phase
shift caused by nonlinear tides from the p–g mode instability
suffer from parameter degeneracies with the other intrinsic
parameters of a neutron star binary. A measurement of the
binary’s chirp mass that is independent of gravitational-wave
observations would break this degeneracy. However, for a
system like GW170817, this would require measurement of the
binary’s chirp mass to a precision greater than ∼0.02% using
an electromagnetic counterpart, which is implausible. Absent
improved theoretical understanding of nonlinear tides from p–g
mode coupling, it is unlikely that future observational
constraints will be able to significantly improve our knowledge
of these physical processes.

We thank Reed Essick, and Nevin Weinberg for helpful
discussions and pointing out errors in our Bayes factor
calculation in an earlier draft of this manuscript (Essick &
Weinberg 2018). We thank Chaitanya Afle, Nils Andersson,
Soumi De, Daniel Finstad, and Pantelis Pnigouras for helpful
discussions. We thank Alex Nitz for writing the initial version
of the code for nonlinear tides in PyCBC. The authors were
supported by the National Science Foundation grant PHY-
1707954. Computational work was supported by Syracuse
University and National Science Foundation grant OAC-
1541396. This research has made use of data obtained from
the Gravitational Wave Open Science Center (https://www.
gw-openscience.org/about/).

Software: PyCBC Inference (Nitz et al. 2018; Biwer et al.
2019), emcee (Foreman-Mackey et al. 2013; Vousden et al.
2016), LIGO Algorithm Library (LIGO Scientific Collaboration
et al. 2018), Matplotlib (Hunter 2007), Scipy (Jones et al. 2001).

ORCID iDs

Steven Reyes https://orcid.org/0000-0002-4599-6054
Duncan A. Brown https://orcid.org/0000-0002-9180-5765

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, PhRvL, 119, 161101
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2018, PhRvL, 121, 161101
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019a, PhRvL, 122, 061104
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019b, PhRvX, 9, 011001
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2020, CQGra, 37, 045006
Andersson, N., & Ho, W. C. G. 2018, PhRvD, 97, 023016

Annis, J., Evans, N. J., Miller, B. J., & Palmeri, T. J. 2019, J. Math. Psychol.,
89, 67

Apostolatos, T. A. 1995, PhRvD, 52, 605
Arun, K. G., Buonanno, A., Faye, G., & Ochsner, E. 2009, PhRvD, 79, 104023
Biwer, C., Capano, C. D., De, S., et al. 2019, PASP, 131, 024503
Blackburn, K., Weinstein, A., Kanner, J., & Chassande-Mottin 2017, LOSC

CLN Data Products for GW170817 (Gravitational Wave Open Science
Center)

Blanchet, L. 2014, LRR, 17, 2
Blanchet, L., Damour, T., Esposito-Farese, G., & Iyer, B. R. 2004, PhRvL, 93,

091101
Blanchet, L., Damour, T., Iyer, B. R., Will, C. M., & Wiseman, A. 1995,

PhRvL, 74, 3515
Bohé, A., Faye, G., Marsat, S., & Porter, E. K. 2015, CQGra, 32, 195010
Bohé, A., Marsat, S., & Blanchet, L. 2013, CQGra, 30, 135009
Buonanno, A., Iyer, B., Ochsner, E., Pan, Y., & Sathyaprakash, B. S. 2009,

PhRvD, 80, 084043
Cantiello, M., Jensen, J. B., & Blakeslee, J. P. 2018, ApJL, 854, L31
Capano, C. D., Tews, I., Brown, S. M., et al. 2020, NatAs, in press
De, S., Finstad, D., Lattimer, J. M., et al. 2018, PhRvL, 121, 091102
Del Pozzo, W., Li, T. G. F., Agathos, M., Van Den Broeck, C., & Vitale, S.

2013, PhRvL, 111, 071101
Droz, S., Knapp, D. J., Poisson, E., & Owen, B. J. 1999, PhRvD, 59, 124016
Earl, D. J., & Deem, M. W. 2005, PCCP, 7, 3910
Efron, B. 1992, Breakthroughs in Statistics (Berlin: Springer), 569
Essick, R., Vitale, S., & Weinberg, N. N. 2016, PhRvD, 94, 103012
Essick, R., & Weinberg, N. N. 2018, arXiv:1809.00264
Finn, L. S. 2001, PhRvD, 63, 102001
Flanagan, E. E., & Hinderer, T. 2008, PhRvD, 77, 021502
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP,

125, 306
Friel, N., Hurn, M., & Wyse, J. 2014, Stat. Comput., 24, 709
Friel, N., & Pettitt, A. N. 2008, J. R. Stat. Soc. B, 70, 589
Hobson, M. P., Jaffe, A. H., Liddle, A. R., Mukherjee, P., & Parkinson, D.

2010, Bayesian Methods in Cosmology (Cambridge: Cambridge Univ.
Press)

Hunter, J. D. 2007, CSE, 9, 90
Jeffreys, H. 1998, The Theory of Probability (Oxford: Oxford Univ. Press)
Jones, E., Oliphant, T., Peterson, P., et al. 2001, SciPy: Open source scientific

tools for Python, http://www.scipy.org/
Kass, R. E., & Raftery, A. E. 1995, J. Am. Stat. Assoc., 90, 773
Kidder, L. E., Will, C. M., & Wiseman, A. G. 1993, PhRvD, 47, R4183
Lartillot, N., & Philippe, H. 2006, Syst. Biol., 55, 195
LIGO Scientific Collaboration 2018, LIGO Algorithm Library, LALSuite,

https://git.ligo.org/lscsoft/lalsuite
Lindblom, L., Owen, B. J., & Brown, D. A. 2008, PhRvD, 78, 124020
Liu, P., Elshall, A. S., Ye, M., et al. 2016, WRR, 52, 734
Marsat, S., Bohé, A., Blanchet, L., & Buonanno, A. 2014, CQGra, 31, 025023
Maturana Russel, P., Meyer, R., Veitch, J., & Christensen, N. 2019, PhRvD,

99, 084006
Mikoczi, B., Vasuth, M., & Gergely, L. A. 2005, PhRvD, 71, 124043
Most, E. R., Papenfort, L. J., Dexheimer, V., et al. 2019, PhRvL, 122, 061101
Nitz, A., Harry, I., Brown, D. A., et al. 2018, ligo-cbc/pycbc: Post-O2 Release

8 v1.9.4, Zenodo, doi:10.5281/zenodo.1208115
Ozel, F., & Freire, P. 2016, ARA&A, 54, 401
Peters, P. C., & Mathews, J. 1963, PhRv, 131, 435
Radice, D., & Dai, L. 2019, EPJA, 55, 50
Raithel, C., Özel, F., & Psaltis, D. 2018, ApJL, 857, L23
Rover, C., Meyer, R., & Christensen, N. 2007, PhRvD, 75, 062004
Sathyaprakash, B. S., & Dhurandhar, S. V. 1991, PhRvD, 44, 3819
Soares-Santos, M., Holz, D. E., & Annis, J. 2017, ApJL, 848, L16
Tews, I., Margueron, J., & Reddy, S. 2018, PhRvC, 98, 045804
Vallisneri, M., Kanner, J., Williams, R., Weinstein, A., & Stephens, B. 2015,

JPhCS, 610, 012021
Venumadhav, T., Zimmerman, A., & Hirata, C. M. 2014, ApJ, 781, 23
Vines, J., Flanagan, E. E., & Hinderer, T. 2011, PhRvD, 83, 084051
Vousden, W. D., Farr, W. M., & Mandel, I. 2016, MNRAS, 455, 1919
Wang, J.-S., & Swendsen, R. H. 2005, PThPS, 157, 317
Weinberg, N. N. 2016, ApJ, 819, 109
Weinberg, N. N., Arras, P., & Burkart, J. 2013, ApJ, 769, 121
Xie, W., Lewis, P. O., Fan, Y., Kuo, L., & Chen, M.-H. 2010, Syst. Biol.,

60, 150
Zhou, Y., & Zhang, F. 2017, ApJ, 849, 114

8

The Astrophysical Journal, 894:41 (8pp), 2020 May 1 Reyes & Brown

https://www.gw-openscience.org/about/
https://www.gw-openscience.org/about/
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://doi.org/10.1103/PhysRevLett.119.161101
https://ui.adsabs.harvard.edu/abs/2017PhRvL.119p1101A/abstract
https://doi.org/10.1103/PhysRevLett.121.161101
https://ui.adsabs.harvard.edu/abs/2018PhRvL.121p1101A/abstract
https://doi.org/10.1103/PhysRevLett.122.061104
https://ui.adsabs.harvard.edu/abs/2019PhRvL.122f1104A/abstract
https://doi.org/10.1103/PhysRevX.9.011001
https://ui.adsabs.harvard.edu/abs/2019PhRvX...9a1001A/abstract
https://doi.org/10.1088/1361-6382/ab5f7c
https://ui.adsabs.harvard.edu/abs/2020CQGra..37d5006A/abstract
https://doi.org/10.1103/PhysRevD.97.023016
https://ui.adsabs.harvard.edu/abs/2018PhRvD..97b3016A/abstract
https://doi.org/10.1016/j.jmp.2019.01.005
https://doi.org/10.1103/PhysRevD.52.605
https://ui.adsabs.harvard.edu/abs/1995PhRvD..52..605A/abstract
https://doi.org/10.1103/PhysRevD.79.104023
https://ui.adsabs.harvard.edu/abs/2009PhRvD..79j4023A/abstract
https://doi.org/10.1088/1538-3873/aaef0b
https://ui.adsabs.harvard.edu/abs/2019PASP..131b4503B/abstract
https://doi.org/10.12942/lrr-2014-2
https://ui.adsabs.harvard.edu/abs/2014LRR....17....2B/abstract
https://doi.org/10.1103/PhysRevLett.93.091101
https://ui.adsabs.harvard.edu/abs/2004PhRvL..93i1101B/abstract
https://ui.adsabs.harvard.edu/abs/2004PhRvL..93i1101B/abstract
https://doi.org/10.1103/PhysRevLett.74.3515
https://ui.adsabs.harvard.edu/abs/1995PhRvL..74.3515B/abstract
https://doi.org/10.1088/0264-9381/32/19/195010
https://ui.adsabs.harvard.edu/abs/2015CQGra..32s5010B/abstract
https://doi.org/10.1088/0264-9381/30/13/135009
https://ui.adsabs.harvard.edu/abs/2013CQGra..30m5009B/abstract
https://doi.org/10.1103/PhysRevD.80.084043
https://ui.adsabs.harvard.edu/abs/2009PhRvD..80h4043B/abstract
https://doi.org/10.3847/2041-8213/aaad64
https://ui.adsabs.harvard.edu/abs/2018ApJ...854L..31C/abstract
https://doi.org/10.1038/s41550-020-1014-6
https://doi.org/10.1103/PhysRevLett.121.091102
https://ui.adsabs.harvard.edu/abs/2018PhRvL.121i1102D/abstract
https://doi.org/10.1103/PhysRevLett.111.071101
https://ui.adsabs.harvard.edu/abs/2013PhRvL.111g1101D/abstract
https://doi.org/10.1103/PhysRevD.59.124016
https://ui.adsabs.harvard.edu/abs/1999PhRvD..59l4016D/abstract
https://doi.org/10.1039/b509983h
https://ui.adsabs.harvard.edu/abs/2005PCCP....7.3910E/abstract
https://doi.org/10.1103/PhysRevD.94.103012
https://ui.adsabs.harvard.edu/abs/2016PhRvD..94j3012E/abstract
http://arxiv.org/abs/1809.00264
https://doi.org/10.1103/PhysRevD.63.102001
https://ui.adsabs.harvard.edu/abs/2001PhRvD..63j2001F/abstract
https://doi.org/10.1103/PhysRevD.77.021502
https://ui.adsabs.harvard.edu/abs/2008PhRvD..77b1502F/abstract
https://doi.org/10.1086/670067
https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F/abstract
https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F/abstract
https://doi.org/10.1007/s11222-013-9397-1
https://doi.org/10.1111/j.1467-9868.2007.00650.x
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
http://arxiv.org/abs/http://www.scipy.org/
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1103/PhysRevD.47.R4183
https://ui.adsabs.harvard.edu/abs/1993PhRvD..47.4183K/abstract
https://doi.org/10.1080/10635150500433722
https://git.ligo.org/lscsoft/lalsuite
https://doi.org/10.1103/PhysRevD.78.124020
https://ui.adsabs.harvard.edu/abs/2008PhRvD..78l4020L/abstract
https://doi.org/10.1002/2014WR016718
https://ui.adsabs.harvard.edu/abs/2016WRR....52..734L/abstract
https://doi.org/10.1088/0264-9381/31/2/025023
https://ui.adsabs.harvard.edu/abs/2014CQGra..31b5023M/abstract
https://doi.org/10.1103/PhysRevD.99.084006
https://ui.adsabs.harvard.edu/abs/2019PhRvD..99h4006M/abstract
https://ui.adsabs.harvard.edu/abs/2019PhRvD..99h4006M/abstract
https://doi.org/10.1103/PhysRevD.71.124043
https://ui.adsabs.harvard.edu/abs/2005PhRvD..71l4043M/abstract
https://doi.org/10.1103/PhysRevLett.122.061101
https://ui.adsabs.harvard.edu/abs/2019PhRvL.122f1101M/abstract
https://doi.org/10.5281/zenodo.1208115
https://doi.org/10.1146/annurev-astro-081915-023322
https://ui.adsabs.harvard.edu/abs/2016ARA&A..54..401O/abstract
https://doi.org/10.1103/PhysRev.131.435
https://ui.adsabs.harvard.edu/abs/1963PhRv..131..435P/abstract
https://doi.org/10.1140/epja/i2019-12716-4
https://ui.adsabs.harvard.edu/abs/2019EPJA...55...50R/abstract
https://doi.org/10.3847/2041-8213/aabcbf
https://ui.adsabs.harvard.edu/abs/2018ApJ...857L..23R/abstract
https://doi.org/10.1103/PhysRevD.75.062004
https://ui.adsabs.harvard.edu/abs/2007PhRvD..75f2004R/abstract
https://doi.org/10.1103/PhysRevD.44.3819
https://ui.adsabs.harvard.edu/abs/1991PhRvD..44.3819S/abstract
https://doi.org/10.3847/2041-8213/aa9059
https://ui.adsabs.harvard.edu/abs/2017ApJ...848L..16S/abstract
https://doi.org/10.1103/PhysRevC.98.045804
https://ui.adsabs.harvard.edu/abs/2018PhRvC..98d5804T/abstract
https://doi.org/10.1088/1742-6596/610/1/012021
https://ui.adsabs.harvard.edu/abs/2015JPhCS.610a2021V/abstract
https://doi.org/10.1088/0004-637X/781/1/23
https://ui.adsabs.harvard.edu/abs/2014ApJ...781...23V/abstract
https://doi.org/10.1103/PhysRevD.83.084051
https://ui.adsabs.harvard.edu/abs/2011PhRvD..83h4051V/abstract
https://doi.org/10.1093/mnras/stv2422
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455.1919V/abstract
https://doi.org/10.1143/PTPS.157.317
https://ui.adsabs.harvard.edu/abs/2005PThPS.157..317W/abstract
https://doi.org/10.3847/0004-637X/819/2/109
https://ui.adsabs.harvard.edu/abs/2016ApJ...819..109W/abstract
https://doi.org/10.1088/0004-637X/769/2/121
https://ui.adsabs.harvard.edu/abs/2013ApJ...769..121W/abstract
https://doi.org/10.1093/sysbio/syq085
https://doi.org/10.3847/1538-4357/aa906e
https://ui.adsabs.harvard.edu/abs/2017ApJ...849..114Z/abstract

	1. Introduction
	2. Waveform Model
	3. Model Priors
	4. Methods
	5. Results
	6. Discussion
	References



